Welcome to CSSE 220

» We are excited that you are here:

- Start your computer and get ready for our first class
session.

> Pick up a quiz from the back table and answer the
first two questions.

Course Introduction,
Starting with Java

CSSE 220—O0bject-Oriented Software Development
Rose-Hulman Institute of Technology

Agenda

» Roll Call

» Instructor intro

» A few administrative details

» Verify Eclipse and Subclipse configuration
» Java vs. Python and C

» Examine and modify simple Java programs

Daily Quizzes

» | expect you to answer every question.
» Stop me if | don’t cover a question!

Roll Call, Introductions

» Tell me what you prefer to be called

» For introductions give:
- Name (nickname)
- Hometown
- Something you enjoy or are very good at

» Student assistants: introduce yourselves.

» Instructor introduction

A Tour of the On-line Course Materials

» ANGEL
» Syllabus
» Schedule

Evening lab assistants, F-217

» 7-9 PM Sunday-Thursday
» Starting tonight (Zack Stewart)

Programming is not a spectator sport

» And neither is this course
» Ask, evaluate, respond, comment!

» Is it better to ask a question and risk
revealing your ignorance, or to remain silent
and perpetuate your ignorance?

It's OK to interrupt during class discussions

» Even with statements like, “/ have no idea
what you were just talking about.”

» We want to be polite, but in this room
learning trumps politeness!

» | do not intend for classroom discussions to
go over your head. Don't let them!

Introduction to Java

Things Java Has in Common with Python

» Classes and objects

» Lists (but no special language syntax for
them like Python)

» Standard ways of doing graphics and GUIs

» A huge library of classes/functions that make
many tasks easier

» A nicer Eclipse interface than C has

Things Java Has in Common with C

» Primitive types: int, char, long, float, double

» Static typing

» Similar syntax and semantics for if, for, while,
break, function definitions, ...

» Semicolons
» Program execution begins with main()
» Comments: // and /* ... */

» Arrays are homogeneous, and size must be
declared at creation; size cannot change

Why Java?

» Widely used in industry for large projects

> From cell phones
- including smart phones—Android platform
- To global medical records

» Object-oriented (unlike C)

» “Statically type safe” (unlike Python, C, C++)
» Less complex than C++

» Part of a strong foundation

» Most popular language according to the TIOBE
Programming Community Index [November 2011]

http://www.tiobe.com/index.php/content/paperinfo/

tpci/index.html

Guess what language is #2

Interlude: JavaScript and Java have little iIn common
(except their names)

E i
THEN WE PROGRAM | £ 5
THE WEB SITE USING A E L‘#JEPL%?_‘E E
FAST GUY IN TIGHTS |¥| correcT hnay' |2 I SAID,
AND A MOVIE ABOUT 3| MEIFIM 1aup— 2 all
COFFEE. i] WRONG. cepter |2 "1F L
¥ E
=
% “.U
%

wwnw. dilbert.com

IG% N i

From Wikipedia (edited, bullets added to enhance PowerPoint readability):

 The change of name to JavaScript roughly coincided with Netscape adding
support for Java technology in its web browser.

 The name caused confusion, giving the impression that JavaScript was a
spin-off of Java.

* The choice has been characterized by many as a marketing ploy by
Netscape to give JavaScript the cachet of what was then the hot new web-
programming language.

* It has also been claimed that the language's name is the result of a co-
marketing deal between Netscape and Sun, in exchange for Netscape
bundling Sun's Java runtime with its then-dominant browser.

Checkout today's project (HW1)

» New Eclipse workspace, Java perspective (there
is probably already a csse220 workspace on
your computer)

» Go to SVN Repository view, at bottom of the
workbench
> If it is not there, Window = Show View - Other -

SVN = SVN Repositories

» Right-click in SVN view, then choose

New Repository Location

- http://svn.csse.rose-hulman.edu/repos/csse220-
201230-username

» Right-click HW1 project and choose Checkout
- Accept default options

Get help immediately if you’re stuck!

HelloPrinter.java

» TO run a Java program:
- Right-click the .java file in Package Explorer view
- Choose Run As — Java Application

» Change the program to say hello to a person
next to you

» Introduce an error in the program

- See if you can come up with a different error than
the person next to you

» Fix the error that the person next to you
introduced

A First Java Program

In Java, all variable and
function definitions are

inside class definitions main is where we start

\

public class HelloPrinter {

public static void main(String[] args) {
System.out.printin('Hello, World!");

System.out is Java's standard System.out is an object from
output stream. This is the the PrintStream class.

variable called out in the PrintStream has a method
System class. called printin().

Define a constant, MAX

public class Factorial {
A Second public static final Int MAX = 17;

Java _ o o
public static int factorial(int n) {
Program /I int product;

4

Except for public | product = 1;

static and the for (int 1 = 2; 1 <=n; 1++) {

declaration of the product = product * i;

loop counter 1

inside the for _ .
header, printhn (below) terminates
everything about return product; the output line after printing;
this function } print doesn’t.

definition is

identical to C. public static void main(String[] args) {

i 1 = 0 1 <= I - 1
This class is called for (int 1 O; 1 Factorial .MAX; 1++) {

Factorial. It has System.out.print(i);

one field called System.out.print(”! = "))
MAX and two System.out.printin(factorial(i));

methods: factorial
and main.

/**
* Has a static method for computing n! JavadOC

* (n factorial) and a main method that

* computes n! for n up to Factorial .MAX. Com ments

x*

* @author Claude Anderson et al. We left out something

pugl ic class Factorial { important o [prRos
[slide — comments!

* Biggest factorial to compute.

*/ Java provides Javadoc
public static final Int MAX = 17; comments (they begin with
Vi /**) for both:

* Computes n! for the given n. * Internal documentation

*

for when someone reads

* @param n the code itself

* @return n! for the given n.

*/ External documentation
public static int factorial (int n) { || for when someone re-uses
the code

}

Writing Javadocs

» Written in special comments: /** ... */
» Can come before:

- Class declarations

> Field declarations

- Constructor declarations

- Method declarations

» Eclipse is your friend!

> It will generate Javadoc comments automatically

> |t will notice when you start typing a Javadoc
comment

In all your code:

» Write appropriate comments:
- Javadoc comments for public fields and methods.
- Explanations of anything else that is not obvious.

» Give self-documenting variable and method

Names.:

- Use name completion in Eclipse, Ctrl-Space, to keep typing
cost low and readability high

» Use Ctrl-Shift-F in Eclipse to format your code.
» Take care of all auto-generated TODO’s.
> Then delete the TODO comment.
» Correct ALL compiler warnings. Quick Fix is your

friend! g

Finish HW1 programs

\

	Welcome to CSSE 220
	Course Introduction,�Starting with Java
	Agenda
	Daily Quizzes
	Roll Call, Introductions
	A Tour of the On-line Course Materials
	Programming is not a spectator sport
	It's OK to interrupt during class discussions
	Introduction to Java
	Things Java Has in Common with Python
	Things Java Has in Common with C
	Why Java?
	Slide Number 13
	Checkout today's project (HW1)
	HelloPrinter.java
	A First Java Program
	A Second Java Program
	Javadoc comments
	Writing Javadocs
	In all your code:
	Homework Due �Before Next Session

